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Figure 1: We present a system for the fabrication of construction sets from example geometry. Pipeline overview: (1) input geometry (2)

symmetry-based tiling grammar (3) optimized grammar (4) pieces that can be manufactured and assembled to (5) produce shape variations.

Abstract

This paper poses the problem of fabricating physical construction sets from example geometry: A construction set provides

a small number of different types of building blocks from which the example model as well as many similar variants can

be reassembled. This process is formalized by tiling grammars. Our core contribution is an approach for simplifying tiling

grammars such that we obtain physically manufacturable building blocks of controllable granularity while retaining variability,

i.e., the ability to construct many different, related shapes. Simplification is performed by sequences of two types of elementary

operations: non-local joint edge collapses in the tile graphs reduce the granularity of the decomposition and approximate

replacement operations reduce redundancy. We evaluate our method on abstract graph grammars in addition to computing

several physical construction sets, which are manufactured using a commodity 3D printer.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems

1. Introduction

The motivating problem for our paper is is to create physical con-
struction set games from virtual example geometry: Given a suit-
able 3D model, we want to fully automatically fabricate sets of
building blocks (for example, with a 3D printer) of a small number
of different types that can be assembled to recreate not only the ex-
ample model but also many shape variations. Informally, one could
characterize this problem as “inverse LEGO”: computing suitable
bricks from example models.

What are the necessary and desirable properties of a 3D con-
structor set? Obviously, the pieces have to be manufacturable, and
must assemble into the example shape(s). The second requirement

has two aspects. First, it should be possible to segment the input
model into the constructor pieces without creating overlaps. Sec-
ond, a disassembly sequence of rigid motions must exist, allow-
ing to construct the resulting shapes from the manufactured pieces.
Good building blocks should be generic: We expect to obtain only
a very small number of different types of building blocks, that al-
ready construct the geometry considered. From the perspective of
the human user, this facilitates understanding of how to utilize the
pieces. In this work, we will obtain these restricting requirements
by trading-off another desirable quality – the expressiveness of the
construction set, i.e., the amount of variations that can be created
using the pieces.

Of course, making a good “construction set game” has many
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Figure 2: Tiles from Bokeloh et al. 2010 [BWS10]. Some individ-

ual parts are highlighted, showing a redundant segmentation (e.g.:

concentric circular pieces on the tower tops in orange / red), and

irregular shape of the pieces.

more facets, such as further constraints on building block geom-
etry (size variability, aspect ratios, minimum size of connecting
surfaces, unique connector geometry to aid assembly, etc.) or psy-
chological aspects such as the relation between “fun to play”, or
“challenge” and geometric properties. However, our paper focuses
only on the abstract problem of obtaining compact sets of physi-
cally realizable building blocks, which we perceive to be the core
obstacle at this point.

The construction set construction problem is tightly related to
recent techniques for inverse procedural modeling [ŠtávaBM∗10,
BWS10, KBW∗12, JTRS12, ZCOM13, MWZ∗13]. These methods
decompose 3D objects into building blocks and derive rules for
their assembly. New shape variations are created by assembling
these pieces along matching boundaries. While the concrete def-
inition of matching and ability to connect differs, the process
can be understood as building a graph with building blocks as
nodes that connect along edges according to fixed rules. Such sys-
tems for assembling graphs of pieces are denoted as tiling gram-

mars [Ber66, KBW∗12, LVW∗15], and our construction sets are a
special instance of these.

Inverse modeling for physical fabrication brings a novel problem
to our attention that has not been considered in virtual scenarios: the
quality of the decomposition in terms of geometry and complex-
ity. Existing approaches often yield oddly shaped building blocks
with complex assembly rules, which makes fabrication and man-
ual assembly very hard. Figure 2 shows an example composition of
a castle model from Bokeloh et al. [BWS10], consisting of oddly
shaped tiles and redundant rules (such as the need for the yellow
and brown adaptor pieces in Figure 2). A more general approach is
discussed by Kalojanov et al. in follow up work [KBW∗12]: It in-
troduces “r-microtiles” as building blocks that construct the whole
family of locally similar shapes. In this case, the construction even
yields infinitesimal pieces (points and curve segments), in addition
to complexly shaped finite parts, rendering physical manufacturing
fully impossible (see Figure 3).

To address these problems in a principled way, our paper intro-
duces the concept of simplifying tiling grammars. We start with a
overly complex tiling grammar and determine an improved set of
only a few, easy to assemble building blocks by following a varia-
tional approach: We minimize an objective function that trades-off
the complexity of the grammar (shape, size, and ease of assembly,
as captured by the number of tiles and rules) with the amount of

shape variations it still represents. Building block assemblies are
represented as a graph and iteratively transformed graph by col-
lapsing related subsets of its edges, modifying the assembly rules
accordingly. Further, pieces of related geometry but different type
according to the grammar rules can be replaced by a single piece
type using an approximate shape matching approach. We employ a
Monte Carlo search technique to sample the space of possible de-
compositions and select the best one according to our cost function.
Finally, we generate final 3D-manufacturable building blocks using
solid modeling operations.

For our motivating application, the fabrication of construction
games, we use Kalojanov et al.’s “r-microtile” as input to the sim-
plification pipeline. Both the locality and the restriction to rigid
transformations of their model capture the essential goals of find-
ing locally cohesive pieces that can be manually assembled in a
construction game. In addition, we also conduct a short experiment
with generic (non-rigid) discrete graph grammars from manual la-
beling [LVW∗15] as input, demonstrating that also more generic,
abstract tiling grammars can be handled, too.

We apply our method to a number of polygonal input scene and
print tiles using a commodity 3D printer. In our experiments, we
could successfully create construction set games for a range of ex-
ample models; the main restriction here is that the input models
themselves need to be well-defined solids, compatible with avail-
able constructive solid modeling tools. We should also stress that
our paper focuses on the problem of obtaining a small number of
easy-to-assemble building blocks; we only consider the minimal set
of mechanical constraints necessary to generate a set of 3D realiz-
able pieces with collision-free assembly.

In summary, our paper makes two main contributions: First, it
already presents a simple, fully-automatic system for creating a
sets of physically manufacturable, and easy-to-assemble building
blocks from suitable example 3D shapes. The complexity of the
construction sets is traded-off against attainable shape variability
and can be flexibly controlled. Second, on the technical side, we
introduce the notion of simplifying tiling grammars (in particular,
this entails simplifying the building blocks of a shape, i.e., an en-
coding of its partial symmetry structure) and present a first prac-
tical algorithm for this task. Being based on a generic variational
formulation, we believe that the method could be easily adapted
for related tasks and could have further applications in inverse-
procedural modeling and symmetry-based shape processing.

2. Related Work

One aspect of our work is the computation and analysis of a set
of pieces that assemble a 3D shape. Mitra et al. [MYY∗10] an-
alyze the functional properties of man-made assemblies. Guo et
al. [GYL∗13] introduce a framework that can automatically com-
pute and visualize the assembly and disassembly of man-made ob-
jects. Their work together with a wide range of research on disas-
sembly analysis and planning [DA03] address the problem of find-
ing optimal assembly/disassembly sequences. In this paper we try
to automatically generate an assembly, for which at least one as-
sembly sequence exists. This is a complicated problem if general
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types of interlocking parts and assembly motions are considered.
Some existing approaches like [SFCO12, SG99] restrict the types
of interlocking components and only allow assembly via transla-
tional motions. In this paper, we instead use a soft optimization
constraint to conservatively minimize the amount of interlocking
components, which can prevent assembly.

Xin et al. [XLF∗11] and Song et al. [SFCO12] address the prob-
lem of decomposing a 3D shape into a set of interlocking puz-
zle pieces. The results of our method can be used to compute 3D
puzzles, however we do not enforce a decomposition into inter-
locking constructor pieces, and instead of restricting the assem-
bly actions to translations, we allow for arbitrary rigid motions.
We also base our work on a symmetry analysis method, which al-
lows to compute building blocks that assemble variations of the
input shape. The works by Fu et al., Singh et al., and Eigensatz et
al. [FLHCO10,SS10,EKS∗10] consider the problem of decompos-
ing surfaces into sets of equivalent patches. The authors optimize
the shape of a polygonal mesh in order to minimize the types of
polygons necessary to represent the model. In this paper we com-
pute triangulation invariant building blocks of an arbitrary three-
dimensional shape. Similarly to the previous related works, the au-
thors do not consider construction of a collection of related shapes
in addition to the original.

While also not the main focus of this work, symmetry detec-
tion plays an important role in the preprocessing stage. See e.g.
the STAR report by Mitra et al. [MPWC13] for a comprehensive
overview. We detail the technical aspects of our symmetry detec-
tion method in a recent technical report [Kal15]. The symmetry
analysis method by Wang et al. [WXL∗11] considers a second or-
der structure in addition to the pieces of a symmetry-induced shape
decomposition (also see [MWZ∗13]) focus on structure- preserv-
ing editing of the input. In contrast, we are interested in modifying
the computed structure and optimizing it for a given application.

The construction of shape grammars from partial symmetry has
been introduced by Bokeloh et al. [BWS10]. The authors find tiles
by considering pairs of non-intersecting symmetric cuts and obtain
a context-free grammar by rejecting overlapping cuts. The repre-
sentation obtained is not manufacturable and often overly complex
and oddly shaped (Figure 2). Kalojanov et al. [KBW∗12] gener-
alize the concept by “microtiling” the surface through the set of
all possible symmetric curve pairs, which yields a prohibitively
complicated and non-physical grammar (including infinitesimally
small, “continuous” pieces).

Liu et al. [LVW∗15] extend the notion of rigid tilings to generic
graphs of partially matching, deformable tiles, where only the
topology of the assembly is constrained and free-form deformation
is used for assembly. We use this generalized model in an experi-
ment to demonstrate simplification of tiling grammars independent
of rigid symmetry. The lack of rigidity restricts this setting to virtual
modeling (fabrication is not possible). Further, Liu et al. note that
even simple rigid tiling grammars are Turing-capable, thereby mak-
ing it impossible to fully assess shape variability (even assembling
finite tile sets is NP-hard). We therefore rely on counting symmet-
ric cut-pairs [BWS10] to lower-bound the variability of the generic

one-slippable two-slippable

Figure 3: Two models are decomposed into their microtiles w.r.t. r-

symmetry. Tiles of the same shape have the same color. Gray area

indicates infinite sets of 2-slippable microtiles (each of which is a

single point) that form planar segments. The red pieces along the

edges of the model visualize 1-slippable geometry (the theoretical

tiling consists of the set of all orthogonal cross-sections). Slippable

tiles arise from continuous (partial) symmetry.

tiling grammars. In our system, the hard problem of assembly is left
to the human user (this is the objective of the game), but the nega-
tive complexity results again clearly show that we must proactively
bound the complexity of the decomposition. Finally, the negative
complexity results also justifies our stochastic search strategy; any
exact solution would be infeasible.

Construction of optimal shape grammars has previously been ex-
plored by Wu et al. [WYD∗14] and Talton et al. [TYK∗12], also
trading-off compactness (a coding length model) against expres-
siveness. The main difference to our work is that only context-free
shape grammars are considered, i.e., all assembly rules must be hi-
erarchically structured. In the context of our construction set appli-
cation, this restriction is unnatural and makes automatic grammar
generation difficult. Further, there is a close connection between
tiling grammars and partial symmetry: Their building blocks di-
rectly provide a low-level encoding of redundancy in shapes. We
believe that further processing and simplifying this type of infor-
mation is a valuable tool of its own, given the importance of partial
symmetry in modern geometry processing algorithms.

3. Structure from Partial Symmetries

We now discuss our processing pipeline. The first step is to create a
building block decomposition. As previously discussed, we employ
the method of Kalojanov et al. [KBW∗12,Kal15], using the code of
the latter reference. For completeness, we briefly review how this
approach generates tiling grammars from partial symmetry:

The main idea is to find partial symmetries in shapes, and cut
shapes such that symmetric geometry is identified as the same type
of building blocks.

r-symmetry: Given a 3D triangle mesh, two points are con-
sidered r-symmetric if their respective spherical neighborhoods of
radius r are identical up a rigid mapping (that matches the two
points). r-symmetry forms an equivalence relation among surface
points.
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r-similarity: A shape S1 is r-similar to S2 if every point from
S1 is r-symmetric to a point on S2. This means, S1 is made of the
same local features as S2. Our objective is to build tiles out of which
we can assemble many shapes, all of which are r-similar to a spe-
cific piece of reference geometry, which exemplifies the style of the
shape family.

Building blocks: Conceptually, we obtain r-microtiles by com-
puting all r-symmetries between all pairs of points. The points that
are always mapped together (i.e., which are associated with the
same set of symmetry transformations) belong to the same tile.
Hence, the tiling yields a segmentation of the input geometry into
a disjoint set of regions that are connected to neighboring tiles
through their boundaries (Figure 3).

Types of tiles: We will observe that many tiles have the exact
same geometric shape. These tiles are said to have the same type,
i.e., the type denotes the shape of the tiles up to a rigid motion.

Slippable tiles: Because of continuous (partial) symmetry (slip-
pable surfaces [GG04]), we can obtain infinitesimally small tiles:
In triangle meshes, any 1-slippable tile is a curve segment extruded
along a straight linear edge. The curve is orthogonal to its extrusion
direction. 2-slippable tiles are just points within planar regions (see
Figure 4).

Initial segmentation: We obtain the initial segmentation as a r-
microtile decomposition (typically r =1-3% of the scene diameter).
Regions of continuous symmetry are not decomposed into infinites-
imal tiles but kept as whole pieces, just tagged as having either one
or two degrees of freedom. They will be further decomposed later
in the process.

Finally, r-microtiles can build all shapes r+ ε-similar to the in-
put for ε > 0 [KBW∗12]. This flexibility usually causes them to
be very detailed and unsuitable for fabrication. For example, the
cathedral model in Figure 3 is decomposed into 931 microtiles of
527 different types (excluding slippabale geometry, which is just
shown as in uniform gray and red, respectively).

3.1. Tiling Graphs from r-Microtiles

We obtain a graph representation of the microtile decomposition
by simply recording neighborhood relations in the previously com-
puted decomposition (Figure 4). Every output region is represented
by a node in the graph, and two nodes are connected if and only
if they have an overlapping spherical r-neighborhood, still treat-
ing slippable areas as single tiles. We also record the type of each
(non-slippable) tile.

Implicit grammar encoding: Importantly, the example graph
itself implicitly encodes the tiling grammar that describes a whole
family of shape. Formally, we consider any object a valid shape
variant that (i) consists only of rigid copies of tiles (nodes) of the
example graph, and (ii) connections to neighboring tiles are only
permitted if the original graph shows at least one example of the
two tiles connecting with the same relative transformation across
the same pair of boundary curves.

Figure 4: Mircotile decomposition (left) and the resulting graph

(right). Equivalent building blocks, graph nodes, and graph edges

are colored identically. One- and two-slippable areas (purple and

gray) are omitted from the graph.

3.2. Generic Discrete Tiling Grammars

Simplifying rigid r-microtile grammars for fabrication is the main
focus of our paper. Nonetheless, the framework of simplifying
tiling grammars is more generally applicable. In order to demon-
strate this, we also consider the model of Liu et al. [LVW∗15] as
potential input: In this work, the authors use a painting interface to
annotate tile types on surfaces, which do not need to be rigidly sym-
metric. From these annotations, we again obtain graphs of nodes
representing different types of shapes. Also in this case, the shape
grammar is encoded implicitly by an example graph, where each
node carries a type annotation and consistently interfaces with its
neighborhood through boundaries. From the point of view of graph
topology, there is no difference to the rigid case (it is even easier
as the special case of slippable tiles is absent). To conduct exper-
iments with this model in our paper, we simply perform manual
labeling of a microtile in a non-rigid way (ensuring fixed boundary
rules for each type during setup); see Figure 12.

4. Graph-based Grammar Simplification

We now address our main objective of simplifying tiling grammars.
We assume that we are given an (abstract) graph of tiles and define
a cost function, which aims to quantify how well the underlying de-
composition is suited for 3D manufacturing. We later optimize the
segmentation according to the cost model by modifying the graph.

4.1. A Cost Model for 3D Manufacturing

Our goal is to minimize the complexity of the tiling grammar by
reducing the number of different pieces and make them easier to
manufacture and assemble. To this end, we define a number of ob-
jective functions that characterize this complexity and perform a
stochastic minimization. Importantly, as the graphs encode a shape
grammar, we will now perform simplification operations simply on
the example graph, which implicitly changes the grammar.

Redundancy: Type annotations in the graph capture redun-
dancy: by recognizing geometry of the same type, storing the same
geometry repeatedly is avoided. Specifically, the initial r-microtile
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66 classes

280 tiles

33 classes

108 tiles

αR=4

 9 classes

15 tiles

αR=1

15 classes

25 tiles

αR=2

Figure 5: A microtile decomposition of a fence model (left) and optimization examples using a basic cost funtion Cost1 := αRCR +CC to

control the amount of simplification. From left to right: CR rises from 0.1 to 0.4; CC drops from 1 to 0.14.

decomposition is optimal in the following sense: Each different r-
neighborhood is provably contained in exactly one microtile type,
hence the surface area of all r-symmetric points is never repre-
sented redundantly. We compute the surface area ni covered by one
instance per tile class i (technically, we approximate area by count-
ing non-empty voxels produced by the decomposition algorithm),
as well as the total area in the scene NV . Our first objective is thus to
avoid reintroducing redundancy during the simplification process.
This is expressed as:

CR := max

{

∑i ni

NV
,αSA

}

,CR ∈ [0,1] (1)

which approximates the fraction of non-redundant surface area in
the representation. We cut out the cost below the constant αSA to
relax the penalty and allow introducing a small amount of redun-
dancy. We set this parameter to 1

20 throughout our experiments.

Simplicity: It is well understood that one of the most important
guidelines for (manual) design for manufacturability and assembly
is to aim at reducing the number of types of pieces necessary to
construct a given object [Boo96]. This translates to minimizing the
number of different tile types. When used with alternative means of
fabrication (such as injection molding instead of 3D printing), this
can even reduce production costs significantly. We use the initial
microtile decomposition as a benchmark for the shape complexity
and express the cost for the number of microtile classes as a frac-
tion of this initial amount (Figure 5). Let TCcurrent and TCinitial be
the set of microtile classes for the optimized and the initial decom-
position. We define:

CC :=
|TCcurrent |

|TCinitial |
,CC ∈ (0,1]. (2)

Assemblability: Being able to ensure that once physical pieces
are produced it will be possible to put them together is a compli-
cated problem – the blocks might have a complex form obstruct-
ing insertion of neighboring pieces. To our knowledge, there is no
related work in the field of geometric modeling dealing with this
problem for pieces that can have arbitrary shape. Instead, related
works (e.g. [XLF∗11, SFCO12]) restrict the allowed shape of their
puzzle pieces such that assemblability can be ensured a priori. We
therefore use insights from the field of mechanics and design for
manufacturing to reduce the likelihood of assembly problems dur-
ing optimization.

In their work on mechanical disassembly analysis, Shyamsundar

CO=0.31 CO=0.22
interlocking
components

Figure 6: The higher the overlap cost (CO), the greater is the

chance of producing interlocking components that can cause prob-

lems during assembly.

et al. [SG99] identify that invalid assemblies are the result of inter-

locking sub-assemblies with at least 2 parts. The latter are charac-
terized by the interfering volumes of the parts participating in the
assembly. An interfering volume is defined by the intersection of
a piece with the convex hull of a neighboring piece. Motivated by
this, we penalize the overlap between bounding boxes of neighbor-
ing microtiles. This reduces the amount and size of the interfering
volumes of neighboring pieces and hence minimizes the chance for
interlocking sub-assemblies (see Figure 6). We use the term:

CO =
1

NT

NT

∑
i=0

∑
NT

j=0
Vi j

Vi
δi j

∑
NT

j=0 δi j

,CO ∈ [0,1], (3)

where Vi j is the volume of the intersection of the bounding boxes
of tile i and tile j, Vi the volume of the bounding box of tile i, NT is
the total number of tiles and

δi j :=

{

1 if tiles i and j are adjacent

0 otherwise.
(4)

The denominator ∑
NT

j=0 δi j is the number of neighbors of tile i and
allows to normalize the maximum value of the cost to 1. Note that
both CO and δi j are defined w.r.t. the decomposition of the shape
into microtiles instances as opposed to CR and CC, which are based
on the number of types (classes) of pieces.

Global Cuts: The previous two objectives encourage simplicity;
a naïve optimization would yield the whole input model as single
building block. We therefore trade this off against shape variability.
As detailed later, in Section 4.5, shape variability is lower bounded
by the number of matching pairs of r-symmetric cuts. Cutting the
shape along those symmetry boundaries allows to re-join the result-
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ing pieces in more than one way, thereby creating shape variations.
We capture this by the cost term:

CGC := |ntarget −ncuts|,CGC ∈ [0,∞], (5)

quantifying the difference between a (user defined) desired (ntarget )
and the actual number (ncuts) of symmetric global cuts. Global cuts
guarantee means of shrinking and expanding the model, i.e., chang-
ing the number of tiles; additional variability is due to exchanging
of tiles of different type but matching boundary.

Finally, in our tests we used the sum of the above cost functions
to measure the quality of the microtile graphs we computed

Cost := αRCR +CC +CO +CGC (6)

The weight αR and the target number of global cuts can be used
to control the amount of simplification during optimization. Figure
5 illustrates how αR influences the trade off between the two main
terms CR and CC. Scaling the term CO in order to prevent compli-
cated assembly is also possible, but was not necessary for our test
models. If not said otherwise, we set αR = 1 vary only the number
of global cuts in the remaining experiments.

Please note that our framework in principle is also fairly general;
the variational formulation makes it easy to define, in future work,
alternative objective functions for other applications.

4.2. Simplification Operations

We now consider operations that incrementally reduce the com-
plexity of the tiling grammar. Specifically, we consider two types
of moves: A non-local joint edge collapse that combines tiles of
different types, and a replacement operation that expresses tiles of
slightly different geometry by same type (i.e., by fixed geometry).

4.2.1. Edge Collapses

We first consider merging of tiles through an non-local joint edge-
collapse in the graph: A single edge collapse will merge two in-
stances of building blocks with each other. In order to preserve
the symmetry structure in the new representation, we only collapse
whole equivalence classes. That is, if we collapse an edge between
a tile x of type X , and tile y of type Y we collapse all edges connect-
ing pairs of tiles of type X and Y (connected through the specific
matching edges) in the graph. This is important because it prevents
reintroducing redundancies through the operation.

Note that collapsing a set of graph edges does not change the
input geometry; it only coarsens its segmentation into microtiles.
With regards to the geometry of the input object, this is a loss-
less operation. Also note that although we try to improve the actual
building blocks, we are able to efficiently perform transformations
directly on the microtile graph.

4.2.2. Tile Replacement

The ability of edge collapses to preserve the original shape and its
symmetry information makes the algorithm sensitive to inaccura-
cies in the initial decomposition. The latter can be caused due to

Figure 7: The corners of several of the windows of this building dif-

fer from the rest, apparently due to a modeling inaccuracy. Lower

right: merging the microtiles into larger building blocks allows to

approximately match these regions despite the discrepancies.

Figure 8: Replacing tile classes during simplification allows to fix

errors in the initial decomposition. In the right example the parts

of the model with complex curvature are identified as similar, even

though some of their r-neighborhoods do not match precisely (left).

numerical errors, noise or other types of deformations in the input
geometry.

On the other hand, our graph simplification approach allows the
discovery of redundant regions in a hierarchical fashion. We can
take advantage of this property by matching pairs of tile classes af-
ter merging them. We perform approximate matching by dividing
each shape into voxel cells [Kal15], and computing a set of a plane
equations (fragments) per cell. Planes are then matched by compar-
ing normals and offsets, tolerating deviations in normal directions
up to 10◦ and offsets up to typically 1/512 of the model diameter.
Increasing the size of the segments reduces the importance of lo-
cal errors or deformations. Although not necessary in general, our
similarity metric scales with the size of the regions being matched.
This allows to identify geometric regions of arbitrary size that are
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Figure 9: An example model and two pairs of symmetric planar

cuts (left) and an optimized microtile decomposition that preserves

these cuts (right). We do not merge microtiles across cuts of this

type to increase the number of shape variants we can construct.

identical up to a user-defined area (we used 10% in all tests). When
computing the initial decomposition the size of each region is fixed
– a single r-neighborhood. Hence, matching merged sets of build-
ing blocks allows to distribute the local errors over larger surface
area and discover additional redundancies in the simplified decom-
position.

Including tile replacement operations during the optimization
made our algorithm robust to local deformations caused by artist
errors (Figure 7) and discretization artifacts in curved shapes in
some models (see Figure 8).

4.3. Optimization Approach

How do we schedule the different operations for finding an optimal
tiling grammar? Let the edge cost be defined as the difference in the
graph cost after collapsing this edge (and all edges equivalent to it).
Unfortunately, the cost of a given edge is not invariant under graph
transformations. This is the case because edge collapses change
global properties of graph such as the number of tile classes (CC) or
introduces changes in the node connectivity (δi j). This makes the
behavior of the cost function for the graph edges difficult to predict
and does not allow to use an efficient optimization strategy.

On the other hand, for a fixed set of edges to be collapsed, the
resulting graph is the same regardless of the order in which the
operations are performed. This reduces the search space: Instead of
looking for an optimal sequence of transformations, one only needs
to determine an optimal subset of the graph edges to collapse.

The individual graph operations do not have very high compu-
tational costs. This facilitates performing a rather exhaustive, ran-
domized search in reasonable time. We perform a series of ran-
dom graph transformations – edge collapses and tile replacement
attempts. Each series is terminated randomly via Russian roulette
with probability 1

NC
(where NC is the number of different node

types). For each model, we perform about NC searches and keep
the graph with the best cost. Although not offering strong optimal-
ity guarantees, this approach already achieves significant improve-
ments with a moderate sample size. A side note: For applications

like design for manufacturing, results will likely be judged sub-
jectively. Here, being able to provide multiple good solutions via
sampling constitutes a certain advantage.

Designing our system, we have also experimented with sev-
eral greedy, deterministic strategies. For example, we collapsed the
largest set of equivalent edges. A single step of this algorithm intro-
duces the smallest decrease in redundancy and keeps CR (see Equa-
tion 1) smallest while at the same time reduces the number of build-
ing blocks and potentially the classes of microtiles (CC, Equation
2). This method was faster compared to the random search, which
delivered slightly superior results. The best cost for the model in
Figure 9 we obtained with the greedy search was 0.8, compared to
0.68 from random sampling.

4.4. Shape Variations

We consider the manufacturing related properties of the building
blocks such as complexity and ability to assemble to be more im-
portant in our test scenario, as long as some of the initial variability
is preserved. Therefore, we opted to trade-off some of the expres-
sive power of the building blocks to further improve the other prop-
erties expressed by the cost function (see Equation 6). To achieve
this we allow three operations that can potentially reduce the num-
ber of shape variations:

• We merge neighboring microtile pairs from the same class,
which can affect the size variations of grid-like repetitive pat-
terns.

• We collapse cycles of equivalent edges, if any of the edge in the
cycle has to be collapsed. This can reduce variations in the size
of the possible microtile cycles.

• We construct and collapse edges through one-slippable regions
of the input shape. This can restrict production of r-similar
shapes through stretching or shrinking the corresponding edges.

If the above operations are disallowed and tile replacement is not
performed during simplification, the expressiveness of the tiling
grammar will not be reduced. In our evaluation, we also encoun-
tered cases, where the initial set of shape variations was preserved
even after performing some of the "unsafe" simplification steps.

4.5. Global Cuts

How can we quantify variability? Unfortunately, tiling grammars
are known to be able to encode the computation of general Tur-
ing machines [Ber66, LVW∗15], rendering it impossible to under-
stand in general any of their properties algorithmically, including
their expressiveness. For this reason, we resort to a lower bound for
quantifying their potential for shape variations: We recall the obser-
vation of Bokeloh et al. [BWS10] that a sufficient (but not always
necessary) condition for shape variations is the presence of pairs of
global cuts that match each other (r-similarly) under a fixed rigid
transformation.

Before the graph optimization step, we set a desired number of
such global cuts that the final graph should contain (we used 2 or
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Figure 10: A triangle mesh is colored with the detected partial

symmetries using a voxel grid. Neither of the two discretizations

provides building blocks invariant under rigid transformations.

3 in our experiments). During graph transformations we keep track
of how many pairs of cuts remain valid after the operation is per-
formed and penalize deviation of the target number in the cost func-
tion with the term CCG (see Equation 5). If the number of remaining
global pairs of cuts becomes less or equal to the target quantity, we
stop performing graph transformations that eliminate the existing
cuts. In other words we set a hard constraint on the minimal num-
ber of global symmetric cuts.

The cuts computed by Bokeloh et al. [BWS10] are computed
in a voxelized representation (see Figure 2), permitting complex
curves. For 3D printing, this representation is not suitable. While it
would be possible to represent these curves analytically, this leads
to significant challenges for the later solid modeling that is required
for 3D printing. For this reason, we opt for a simple but robust
solution and restrict the additional global cuts to planar cuts only
(see Figure 9).

The global planar cuts are also used to presegment the slip-
pable geometry that we so far have considered as single coherent
pieces: Each global plane is constructed to separate pairs of rigid
tiles either indirectly, through a connecting slippable edge, or di-
rectly, through the middle of a non-slippable connecting edge. This
simplifies the detection of the global cuts: we need to check once
for each non-slippable graph edge and sample along the remain-
ing edges to exhaust all possible cut locations. Choosing to split
rigid edges in a ratio 1:1 also simplifies the later extraction of the
non-slippable building blocks via CSG operations. In the further
process, this also splits intersecting planar (2-slippable) nodes. In
the supplemental document to this paper, we provide more techni-
cal details on how global cuts affect the final, volumetric building
blocks.

5. Volumetric Building Blocks

Our analysis so far is performed on a triangle mesh representing an
input surface. In this section, we describe another contribution of
this paper – our method for converting the optimized surface de-
composition into manufacturable building blocks. The main chal-

Figure 11: The spherical r-neighborhoods of corners (left) are

merged with one-slippable edges (middle) and two-slippable pla-

nar areas (right) of the model and then carved out of the input

model using CSG operations.

lenge we need to address, is ensuring that the resulting pieces are
invariant under rigid transformations. As shown in Figure 10, the
correspondences based on point-wise r-symmetry yield triangula-
tion independent decomposition, and a straight-forward voxeliza-
tion in rectilinear voxels does not deliver interchangeable rigid
pieces. This prevents the mass-production of the individual con-
structor pieces. In a scenario, where 3D-printing is used to man-
ufacture the pieces, the problem presents itself during assembly,
where only a correct variant of a building block will fit given con-
figuration of adjacent pieces.

The naïve solution to only identify pieces as similar if they are
triangulated in the same way will obviously discard most of the
initial symmetries and significantly reduce the possible shape vari-
ations. To address the problem of computing exactly matching rigid
building blocks we derive a discretization from the definition of r-
symmetry. Even though the initial correspondences are defined per
point on the input surface, we can prove that it suffices to consider
a finite amount of surface elements in order to obtain a complete
decomposition of corresponding points.

We consider three types of discrete elements: geometric corners,
geometric edges and planar regions. In other words, we separate
the points on the input surface based on their r-slippability. Each
point on the triangle mesh will either be two-slippable, or inside
the r-neighborhood of a corner or edge, which shows that the input
surface is covered by r-neighborhoods of finitely many elements
apart from the two-slippable regions, which are easy to extract.

Using the above considerations, we can enclose all important
neighborhoods by a set of spheres around corner features and cylin-
ders along the line features. This allows to extract a 3D manufac-
turable representation of our r-symmetric building blocks via CSG
operations with simple geometric primitives. In our implementa-
tion, we compute a CSG tree that encloses the r-neighborhood of
each building block. Intersecting the tree with the input model de-
livers 3D manufacturable building blocks. We verify our extraction
method, using a Fused Decomposition Modeling (FDM) 3D-printer
to produce a set of constructor pieces for several test models.

We also implemented several strategies to resolve intersections
of r-neighborhoods on tile boundaries. Although not essential for
the evaluation of our method, this ensures a canonical representa-
tion of the final pieces and allows for simplified extraction. This
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Figure 12: Left: A model is decomposed manually in 18 pieces

of 5 types. Middle: The optimized version consists of 12 pieces of 4

types. Right: Allowing replacement of approximately matching tiles

further reduces the complexity to 6 pieces of 3 types.

is the case, because that shape of the extracted building blocks re-
mains the same, regardless of the order in which the pieces are "cut
out" of the input model. We discuss the technical details of this
method in a supplementary document provided along with this pa-
per.

6. Evaluation

We demonstrate that our approach is practical by implementing all
stages of the pipeline depicted in Figure 1. The cutting of exact
manufacturable building blocks from the original shape is done by
generating a script and executing it in OpenSCAD [Ope] - a tool
for programmatic CAD modeling.

Decomposition Quality: We tested our method on several
meshes of various complexity displayed in Figure 13, 14, 15 and
16. Note that we do not refer to the triangle count, but the num-
ber of partial self-symmetries, when discussing the complexity of
the input model (our method is fully agnostic to the triangulation).
Our test models are subject to self-symmetries generated by a large
number (in the order of 104 −105) of transformations. Using graph
transformations, we could improve both the cost for the decom-
position by more than an order of magnitude and the number of
building blocks by more than two orders of magnitude (see Table
1). The resulting building blocks are still able to reproduce the ma-
jor part of the meaningful r-similar variations of the input object
(see Figures 13, 14, 15, 16, and 18).

We also tested our grammar simplification method on a manu-
ally decomposed shape, similar to test models used by [LVW∗15].
We could improve the complexity of the decomposition even for
the already simple example in Figure 12. We show the optimal re-
sults without and with tile replacement operations (Section 4.2.2),
because the latter allow to identify pieces marked by the user as dif-
ferent. Note that this test did not use the cost terms CO and CGC; the
corresponding properties (assembly and variability) were provided
by the user.

Global cuts: Instead of computing the complete shape decom-
position (Figures 13, 14, and 15), the last step of the pipeline can be
modified to generate constructor pieces by splitting the shape along
its global cuts (Figures 16 and 18). In general, the global cuts pro-
vide only a subset of the shape variations. Individual rigid pieces
can also be swapped, e.g. the tower tops in Figure 15(4). Finally,

# rigid pieces # types of rigid pieces cost
init. opt. red. init. opt. red. init. opt. red.

tower 104 8 13× 15 2 7× 1.21 0.28 4×
bridge 232 8 29× 27 3 9× 1.39 0.26 5×
house 246 27 9× 36 11 3× 2.19 0.42 5×
castle 693 149 4× 53 12 4× 1.31 0.65 2×

church 2042 8 255× 309 4 77× 1.32 0.5 2×
asylum 1130 81 14× 277 17 16× 3.32 0.26 12×

Table 1: The improvement in the rigid building blocks and the

overall cost of the decomposition we achieved after optimization.

the initial expressiveness of the shape grammar can be preserved
by restricting the graph simplification operations, which coinciden-
tally is the case for the final decomposition of the tower and bridge
models in Figures 1 and 13.

3D Manufacturing: In order to demonstrate that the decompo-
sition we compute is manufacturable, we used a Fused Decompo-
sition Modeling 3D printer (MakerBot Replicator 2 [Mak]) to pro-
duce the resulting pieces. Although we use a soft constraint to en-
sure the assemblability of the building blocks, our method works
well in practice: penalizing the overlap of the bounding volumes of
neighboring pieces was sufficient and we did not encounter prob-
lems when assembling our test models. It was also possible to as-
semble our test models even if the one and two-slippable pieces
were printed together (see Figure 17 and the supplemented video).

Complexity parameters: We also explore how we can adapt
the granularity of our construction sets by varying parameters (Fig-
ures 5,19, and the supplemental document): Increasing the weight
αR for the redundancy term CR in the cost formulation limits the
amount of simplification and allows to preserve more of the ini-
tially discovered partial symmetries. This increases the amount of
shape variations. In Figure 19, the use of larger αR enables swap-
ping the types of castle towers, modifying the length of the castle
walls, as well as more variations of the facade of the asylum model.
The difference between αR and the target number of cuts ntarget

w.r.t. creating shape variations is that not all related shapes pre-
served by αR can be constructed using manufactured, rigid building
blocks. Variations that involve slippable geometry are problematic.
For example, swapping the types of windows in a facade after the
building blocks are manufactured is only possible if both pieces
have the same silhouette. This makes the use of αR better suited for
modeling virtual shapes.

Performance: All computations were performed on a PC with
an Intel Core i7-3770K CPU, 16 GB of RAM, and an NVidia
GeForce 570 GTX graphics card. The initial symmetry detection
took about 1 minute for the models in Figures 14 and 15. The ran-
dom search of a tile graph with optimal cost took up to 20 min-
utes, most of which was spent on matching tile replacement can-
didates. This part of the implementation can be made interactive,
by providing feedback in sub-second times after a small number
of graph transformations and allowing the user to accept or dis-
card the modifications. Using OpenSCAD to perform the CSG op-
erations and compute the triangle meshes for the manufacturable
building blocks was the slowest part of the process. We do not con-
sider this to be an important performance bottleneck, since each
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microtilesinput optimized shape variations

Figure 13: A bridge is initially decomposed into 232 microtiles of 27 types, excluding slippable elements. The optimized decomposition with

two global cuts consists of 13 pieces of 5 types including 5 slippable elements of 3 types. The initial cost of 1.39 was reduced to 0.26. We

created some of the possible shape variations with the simplified building blocks.

microtilesinput optimized shape variations

Figure 14: A model of a modern building is initially decomposed into 246 microtiles of 36 types, excluding slippable elements. The optimized

decomposition consists of 47 pieces of 28 types including 20 slippable elements of 17 types. The initial cost of 2.19 was reduced to 0.42. We

preserved two global cuts and used them to construct some shape variations.

operation has to be performed as a post-process and only once for
each type of rigid building blocks and additional 2n times for the
slippable pieces, where n is the number of pairs of symmetric cuts.
Therefore, we opted for highly tessellated meshes for the building
blocks, resulting in run-times between several minutes and 8 hours
for the most complex set of slippable pieces of the castle model
(Figure 15).

7. Limitations and Future Work

The shape analysis approach presented in this chapter has several
limitations that provide interesting avenues for future work.

Our system for building construction sets still remains rather ba-
sic. We only consider the minimal amount of mechanical properties
necessary to create the final constructor pieces: we use a soft con-
straint to ensure assemblability and neglect the structural strength
of the pieces apart from parameterizing the thickness of the two-
slippable elements in the CSG scripts that generate them. Higher-
level aspects, such as assembly aids or the human reception of con-
struction games are not considered yet at all.

Further, we also still limit the shape of the global symmetric cuts
used to generate shape variation in the slippable building blocks
to infinite planes. Splitting along cuts of an arbitrary shape is not
easy to perform with the elementary CSG primitives and operations
we used in our tests. In general, we found in particular the robust-
ness of constructive solid geometry operations to be a key limita-
tion in practice. In addition of problems with handling complexly
structured Boolean operations, the inability of the CSG library to
process some 3D models was the prime reason for not being able
to handle input meshes within our system. There has been work
on robust and efficient CSG algorithms (see e.g. [BEH∗05]) using
techniques such as adaptive interval arithmetics, the incorporation
of which would be an interesting topic of future work.

Because the method we describe here is in essence a simplifi-
cation algorithm, the amount of shape variations and the possible
improvement in the decomposition depend on the model and its
initial segmentation. Even though approximately matching simpli-
fied building blocks extends the space of possible solutions, which
made the system more robust to inaccurately modeled objects, not
every shape presents a symmetry structure that can be simplified
into an interesting set of building blocks.
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microtilesinput optimized shape variations

Figure 15: A castle is initially decomposed into 693 microtiles of 53 types, excluding slippable elements. The optimized decomposition

consists of 191 pieces of 39 types including 42 slippable elements of 27 types. The initial cost of 1.31 was reduced to 0.65. In addition to the

three global cuts, we created shape variations by exchanging rigid pieces.

microtilesinput optimal cuts shape variations

Figure 16: A church is initially decomposed into 2042 microtiles of 209 types, excluding slippable elements. The optimized decomposition

consists of 8 pieces of 4 types excluding slippable elements. The initial cost of 1.32 was reduced to 0.5. We only used the discovered global

cuts to decompose the model and did not separate rigid and slippable microtiles.

8. Conclusion

In this paper, we have introduced the idea of simplifying tiling
grammars. A tiling grammar encodes shape families as an assem-
bly of pieces by docking their boundaries according to prescribed
rules. Our algorithm takes an overly detailed description, as typi-
cally arising from fully automatic inverse procedural modeling, and
coarsens the model to a user specified level while maintaining the
variability of the encoded shape family. The core idea is to opti-
mize the representation by trying many combinations of merging
and replacement operations to minimize an objective function that
trades-off complexity and a lower bound on retained variability.

We employ this new algorithm to construct a system for fabri-
cating 3D construction set games fully automatically from a 3D
model with controllable complexity. The larger system is obtained
by applying the simplification algorithm to building blocks ob-
tained from rigid microtiling, which itself yields flexible but overly
complicated tiling grammars. The simplified decomposition is con-
verted through a CSG construction into printable and easy to as-
semble pieces that are fabricated on a 3D printer.

We believe that the idea of simplifying tiling grammars could
become a useful tool for broader applications, in particular in the
context of inverse procedural modeling (where model quality is dif-

ficult to control). Our framework is easy to extend in terms of both
adding further simplification operations as well as formulating var-
ious objective functions. This paper already shows that manufac-
turing constraints (overlap penalties) can be easily integrated, and
exploring further applications would be a very interesting opportu-
nity of future work.
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176 tiles

CR = 0.1  CC = 0.34  CO  = 0.23  CGC = 0

  αR = 12

ncuts =   1

46 classes

335 tiles
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9 classes

24 tiles
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  αR = 4

ncuts = 2

17 classes

158 tiles
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16 classes

245 tiles

CR = 0.11  CC = 0.28  CO  = 0,23  CGC = 0 CR = 0.08  CC = 0.26  CO  = 0,28  CGC = 0

  αR = 12

ncuts =   2

25 classes

228 tiles

CR = 0.08 CC = 0.43 CO  = 0,23  CGC = 0
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26 classes
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ncuts = 2

24 classes
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  αR = 4

ncuts = 2

34 classes

206 tiles
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  αR = 8

ncuts = 2

168 classes

525tiles

CR = 0.09  CC = 0.5  CO  = 0.17  CGC = 0

Figure 19: The granularity of the building blocks can be controlled by weighting the redundancy term: CR with αR. Preserving more of the

initially discovered symmetries can increase the amount of shape variations like the length of the castle walls or the possible facades of the
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